Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 318
Filter
1.
Sci Data ; 11(1): 448, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702329

ABSTRACT

Time-critical transcriptional events in the immune microenvironment are important for response to immune checkpoint blockade (ICB), yet these events are difficult to characterise and remain incompletely understood. Here, we present whole tumor RNA sequencing data in the context of treatment with ICB in murine models of AB1 mesothelioma and Renca renal cell cancer. We sequenced 144 bulk RNAseq samples from these two cancer types across 4 time points prior and after treatment with ICB. We also performed single-cell sequencing on 12 samples of AB1 and Renca tumors an hour before ICB administration. Our samples were equally distributed between responders and non-responders to treatment. Additionally, we sequenced AB1-HA mesothelioma tumors treated with two sample dissociation protocols to assess the impact of these protocols on the quality transcriptional information in our samples. These datasets provide time-course information to transcriptionally characterize the ICB response and provide detailed information at the single-cell level of the early tumor microenvironment prior to ICB therapy.


Subject(s)
Carcinoma, Renal Cell , Immune Checkpoint Inhibitors , Kidney Neoplasms , Mesothelioma , Tumor Microenvironment , Animals , Mice , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Immune Checkpoint Inhibitors/therapeutic use , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Mesothelioma/drug therapy , Mesothelioma/genetics , RNA-Seq , Sequence Analysis, RNA , Single-Cell Analysis
2.
Oncoimmunology ; 13(1): 2345859, 2024.
Article in English | MEDLINE | ID: mdl-38686178

ABSTRACT

Immune checkpoint therapy (ICT) causes durable tumour responses in a subgroup of patients, but it is not well known how T cell receptor beta (TCRß) repertoire dynamics contribute to the therapeutic response. Using murine models that exclude variation in host genetics, environmental factors and tumour mutation burden, limiting variation between animals to naturally diverse TCRß repertoires, we applied TCRseq, single cell RNAseq and flow cytometry to study TCRß repertoire dynamics in ICT responders and non-responders. Increased oligoclonal expansion of TCRß clonotypes was observed in responding tumours. Machine learning identified TCRß CDR3 signatures unique to each tumour model, and signatures associated with ICT response at various timepoints before or during ICT. Clonally expanded CD8+ T cells in responding tumours post ICT displayed effector T cell gene signatures and phenotype. An early burst of clonal expansion during ICT is associated with response, and we report unique dynamics in TCRß signatures associated with ICT response.


Subject(s)
Immune Checkpoint Inhibitors , Lymphocytes, Tumor-Infiltrating , Receptors, Antigen, T-Cell, alpha-beta , Animals , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Mice , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Humans , Mice, Inbred C57BL , Female
3.
Front Immunol ; 15: 1373745, 2024.
Article in English | MEDLINE | ID: mdl-38680500

ABSTRACT

Background: Protective immunity against intestinal helminths requires induction of robust type-2 immunity orchestrated by various cellular and soluble effectors which promote goblet cell hyperplasia, mucus production, epithelial proliferation, and smooth muscle contractions to expel worms and re-establish immune homeostasis. Conversely, defects in type-2 immunity result in ineffective helminth clearance, persistent infection, and inflammation. Macrophages are highly plastic cells that acquire an alternatively activated state during helminth infection, but they were previously shown to be dispensable for resistance to Trichuris muris infection. Methods: We use the in vivo mouse model A20myel-KO, characterized by the deletion of the potent anti-inflammatory factor A20 (TNFAIP3) specifically in the myeloid cells, the excessive type-1 cytokine production, and the development of spontaneous arthritis. We infect A20myel-KO mice with the gastrointestinal helminth Trichuris muris and we analyzed the innate and adaptive responses. We performed RNA sequencing on sorted myeloid cells to investigate the role of A20 on macrophage polarization and type-2 immunity. Moreover, we assess in A20myel-KO mice the pharmacological inhibition of type-1 cytokine pathways on helminth clearance and the infection with Salmonella typhimurium. Results: We show that proper macrophage polarization is essential for helminth clearance, and we identify A20 as an essential myeloid factor for the induction of type-2 immune responses against Trichuris muris. A20myel-KO mice are characterized by persistent Trichuris muris infection and intestinal inflammation. Myeloid A20 deficiency induces strong classical macrophage polarization which impedes anti-helminth type-2 immune activation; however, it promotes detrimental Th1/Th17 responses. Antibody-mediated neutralization of the type-1 cytokines IFN-γ, IL-18, and IL-12 prevents myeloid-orchestrated Th1 polarization and re-establishes type-2-mediated protective immunity against T. muris in A20myel-KO mice. In contrast, the strong Th1-biased immunity in A20myel-KO mice offers protection against Salmonella typhimurium infection. Conclusions: We hereby identify A20 as a critical myeloid factor for correct macrophage polarization and appropriate adaptive mucosal immunity in response to helminth and enteric bacterial infection.


Subject(s)
Macrophage Activation , Macrophages , Mice, Knockout , Trichuriasis , Trichuris , Tumor Necrosis Factor alpha-Induced Protein 3 , Animals , Mice , Macrophages/immunology , Trichuris/immunology , Trichuriasis/immunology , Tumor Necrosis Factor alpha-Induced Protein 3/immunology , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Macrophage Activation/immunology , Myeloid Cells/immunology , Disease Resistance/immunology , Mice, Inbred C57BL , Cytokines/metabolism , Cytokines/immunology , Immunity, Innate , Disease Models, Animal , Th2 Cells/immunology
4.
Sci Rep ; 14(1): 9457, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658627

ABSTRACT

Increased use of therapeutic monoclonal antibodies and the relatively high manufacturing costs fuel the need for more efficient production methods. Here we introduce a novel, fast, robust, and safe isolation platform for screening and isolating antibody-producing cell lines using a nanowell chip and an innovative single-cell isolation method. An anti-Her2 antibody producing CHO cell pool was used as a model. The platform; (1) Assures the single-cell origin of the production clone, (2) Detects the antibody production of individual cells and (3) Isolates and expands the individual cells based on their antibody production. Using the nanowell platform we demonstrated an 1.8-4.5 increase in anti-Her2 production by CHO cells that were screened and isolated with the nanowell platform compared to CHO cells that were not screened. This increase was also shown in Fed-Batch cultures where selected high production clones showed titers of 19-100 mg/L on harvest day, while the low producer cells did not show any detectable anti-Her2 IgG production. The screening of thousands of single cells is performed under sterile conditions and the individual cells were cultured in buffers and reagents without animal components. The time required from seeding a single cell and measuring the antibody production to fully expanded clones with increased Her-2 production was 4-6 weeks.


Subject(s)
Antibodies, Monoclonal , Cricetulus , Receptor, ErbB-2 , CHO Cells , Animals , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/biosynthesis , Antibody-Producing Cells/immunology , Antibody-Producing Cells/metabolism , Humans , Cell Separation/methods , Single-Cell Analysis/methods
5.
Front Immunol ; 15: 1370907, 2024.
Article in English | MEDLINE | ID: mdl-38533515

ABSTRACT

Introduction: Chronic activation of self-reactive T cells with beta cell antigens results in the upregulation of immune checkpoint molecules that keep self-reactive T cells under control and delay beta cell destruction in autoimmune diabetes. Inhibiting PD1/PD-L1 signaling results in autoimmune diabetes in mice and humans with pre-existing autoimmunity against beta cells. However, it is not known if other immune checkpoint molecules, such as TIGIT, can also negatively regulate self-reactive T cells. TIGIT negatively regulates the CD226 costimulatory pathway, T-cell receptor (TCR) signaling, and hence T-cell function. Methods: The phenotype and function of TIGIT expressing islet infiltrating T cells was studied in non-obese diabetic (NOD) mice using flow cytometry and single cell RNA sequencing. To determine if TIGIT restrains self-reactive T cells, we used a TIGIT blocking antibody alone or in combination with anti-PDL1 antibody. Results: We show that TIGIT is highly expressed on activated islet infiltrating T cells in NOD mice. We identified a subset of stem-like memory CD8+ T cells expressing multiple immune checkpoints including TIGIT, PD1 and the transcription factor EOMES, which is linked to dysfunctional CD8+ T cells. A known ligand for TIGIT, CD155 was expressed on beta cells and islet infiltrating dendritic cells. However, despite TIGIT and its ligand being expressed, islet infiltrating PD1+TIGIT+CD8+ T cells were functional. Inhibiting TIGIT in NOD mice did not result in exacerbated autoimmune diabetes while inhibiting PD1-PDL1 resulted in rapid autoimmune diabetes, indicating that TIGIT does not restrain islet infiltrating T cells in autoimmune diabetes to the same degree as PD1. Partial inhibition of PD1-PDL1 in combination with TIGIT inhibition resulted in rapid diabetes in NOD mice. Discussion: These results suggest that TIGIT and PD1 act in synergy as immune checkpoints when PD1 signaling is partially impaired. Beta cell specific stem-like memory T cells retain their functionality despite expressing multiple immune checkpoints and TIGIT is below PD1 in the hierarchy of immune checkpoints in autoimmune diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Animals , Humans , Mice , Immune Checkpoint Proteins , Ligands , Mice, Inbred NOD , Receptors, Immunologic/metabolism
6.
Cell Rep ; 43(4): 114020, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38554280

ABSTRACT

Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics.


Subject(s)
Autophagy , Immune Checkpoint Inhibitors , Lymph Nodes , Sphingosine/analogs & derivatives , T-Lymphocytes , Autophagy/drug effects , Animals , Lymph Nodes/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mice , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice, Inbred C57BL , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 5/genetics , Endothelial Cells/metabolism , Sphingosine/pharmacology , Sphingosine/metabolism , Humans , Lysophospholipids/metabolism , Immunotherapy/methods , Cell Movement
7.
bioRxiv ; 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38464161

ABSTRACT

We previously reported that the DNA alkylator and transcriptional-blocking chemotherapeutic agent trabectedin enhances oncolytic herpes simplex viroimmunotherapy in human sarcoma xenograft models, though the mechanism remained to be elucidated. Here we report trabectedin disrupts the intrinsic cellular anti-viral response which increases viral transcript spread throughout the human tumor cells. We also extended our synergy findings to syngeneic murine sarcoma models, which are poorly susceptible to virus infection. In the absence of robust virus replication, we found trabectedin enhanced viroimmunotherapy efficacy by reducing immunosuppressive macrophages and stimulating granzyme expression in infiltrating T and NK cells to cause immune-mediated tumor regressions. Thus, trabectedin enhances both the direct virus-mediated killing of tumor cells and the viral-induced activation of cytotoxic effector lymphocytes to cause tumor regressions across models. Our data provide a strong rationale for clinical translation as both mechanisms should be simultaneously active in human patients.

8.
Cell Rep ; 43(3): 113824, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38386557

ABSTRACT

Adipose tissue homeostasis relies on the interplay between several regulatory lineages, such as type 2 innate lymphoid cells (ILC2s), T helper 2 (Th2) cells, regulatory T cells, eosinophils, and type 2 macrophages. Among them, ILC2s are numerically the dominant source of type 2 cytokines and are considered as major regulators of adiposity. Despite the overlap in immune effector molecules and sensitivity to alarmins (thymic stromal lymphopoietin and interleukin-33) between ILC2s and resident memory Th2 lymphocytes, the role of the adaptive axis of type 2 immunity remains unclear. We show that mice deficient in CD27, a member of the tumor necrosis factor receptor superfamily, are more resistant to obesity and associated disorders. A comparative analysis of the CD4 compartment of both strains revealed higher numbers of fat-resident memory Th2 cells in the adipose tissue of CD27 knockout mice, which correlated with decreased programmed cell death protein 1-induced apoptosis. Our data point to a non-redundant role for Th2 lymphocytes in obesogenic conditions.


Subject(s)
Immunity, Innate , Lymphocytes , Animals , Mice , Cytokines/metabolism , Homeostasis , Interleukin-33 , Intra-Abdominal Fat/metabolism , Lymphocytes/metabolism , Th2 Cells , Tumor Necrosis Factor Receptor Superfamily, Member 7
9.
Cancer Immunol Immunother ; 73(1): 16, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38236251

ABSTRACT

Collagen expression and structure in the tumour microenvironment are associated with tumour development and therapy response. Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a widely expressed inhibitory collagen receptor. LAIR-2 is a soluble homologue of LAIR-1 that competes for collagen binding. Multiple studies in mice implicate blockade of LAIR-1:collagen interaction in cancer as a promising therapeutic strategy. Here, we investigated the role of LAIR-1 in anti-tumour responses. We show that although LAIR-1 inhibits activation, proliferation, and cytokine production of mouse T cells in vitro, tumour outgrowth in LAIR-1-deficient mice did not differ from wild type mice in several in vivo tumour models. Furthermore, treatment with NC410, a LAIR-2-Fc fusion protein, did not result in increased tumour clearance in tested immunocompetent mice, which contrasts with previous data in humanized mouse models. This discrepancy may be explained by our finding that NC410 blocks human LAIR-1:collagen interaction more effectively than mouse LAIR-1:collagen interaction. Despite the lack of therapeutic impact of NC410 monotherapy, mice treated with a combination of NC410 and anti-programmed death-ligand 1 did show reduced tumour burden and increased survival. Using LAIR-1-deficient mice, we showed that this effect seemed to be dependent on the presence of LAIR-1. Taken together, our data demonstrate that the absence of LAIR-1 signalling alone is not sufficient to control tumour growth in multiple immunocompetent mouse models. However, combined targeting of LAIR-1 and PD-L1 results in increased tumour control. Thus, additional targeting of the LAIR-1:collagen pathway with NC410 is a promising approach to treating tumours where conventional immunotherapy is ineffective.


Subject(s)
B7-H1 Antigen , Neoplasms , Animals , Humans , Mice , Collagen , Disease Models, Animal , Leukocytes , Ligands , Neoplasms/drug therapy , Tumor Microenvironment
10.
Cell Rep Med ; 5(1): 101377, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38232703

ABSTRACT

Current immunotherapies provide limited benefits against T cell-depleted tumors, calling for therapeutic innovation. Using multi-omics integration of cancer patient data, we predict a type I interferon (IFN) responseHIGH state of dendritic cell (DC) vaccines, with efficacious clinical impact. However, preclinical DC vaccines recapitulating this state by combining immunogenic cancer cell death with induction of type I IFN responses fail to regress mouse tumors lacking T cell infiltrates. Here, in lymph nodes (LNs), instead of activating CD4+/CD8+ T cells, DCs stimulate immunosuppressive programmed death-ligand 1-positive (PD-L1+) LN-associated macrophages (LAMs). Moreover, DC vaccines also stimulate PD-L1+ tumor-associated macrophages (TAMs). This creates two anatomically distinct niches of PD-L1+ macrophages that suppress CD8+ T cells. Accordingly, a combination of PD-L1 blockade with DC vaccines achieves significant tumor regression by depleting PD-L1+ macrophages, suppressing myeloid inflammation, and de-inhibiting effector/stem-like memory T cells. Importantly, clinical DC vaccines also potentiate T cell-suppressive PD-L1+ TAMs in glioblastoma patients. We propose that a multimodal immunotherapy and vaccination regimen is mandatory to overcome T cell-depleted tumors.


Subject(s)
Glioblastoma , Vaccines , Humans , Animals , Mice , CD8-Positive T-Lymphocytes , B7-H1 Antigen , Macrophages , Dendritic Cells , Lymph Nodes/metabolism , Vaccines/metabolism
11.
J Immunother Cancer ; 11(11)2023 11.
Article in English | MEDLINE | ID: mdl-37940346

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers. Despite the successful application of immune checkpoint blockade in a range of human cancers, immunotherapy in PDAC remains unsuccessful. PDAC is characterized by a desmoplastic, hypoxic and highly immunosuppressive tumor microenvironment (TME), where T-cell infiltration is often lacking (immune desert), or where T cells are located distant from the tumor islands (immune excluded). Converting the TME to an immune-inflamed state, allowing T-cell infiltration, could increase the success of immunotherapy in PDAC. METHOD: In this study, we use the KPC3 subcutaneous PDAC mouse model to investigate the role of tumor-derived sialic acids in shaping the tumor immune landscape. A sialic acid deficient KPC3 line was generated by genetic knock-out of the CMAS (cytidine monophosphate N-acetylneuraminic acid synthetase) enzyme, a critical enzyme in the synthesis of sialic acid-containing glycans. The effect of sialic acid-deficiency on immunotherapy efficacy was assessed by treatment with anti-programmed cell death protein 1 (PD-1) and agonistic CD40. RESULT: The absence of sialic acids in KPC3 tumors resulted in increased numbers of CD4+ and CD8+ T cells in the TME, and reduced frequencies of CD4+ regulatory T cells (Tregs) within the T-cell population. Importantly, CD8+ T cells were able to infiltrate the tumor islands in sialic acid-deficient tumors. These favorable alterations in the immune landscape sensitized sialic acid-deficient tumors to immunotherapy, which was ineffective in sialic acid-expressing KPC3 tumors. In addition, high expression of sialylation-related genes in human pancreatic cancer correlated with decreased CD8+ T-cell infiltration, increased presence of Tregs, and poorer survival probability. CONCLUSION: Our results demonstrate that tumor-derived sialic acids mediate T-cell exclusion within the PDAC TME, thereby impairing immunotherapy efficacy. Targeting sialic acids represents a potential strategy to enhance T-cell infiltration and improve immunotherapy outcomes in PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Mice , Animals , Humans , CD8-Positive T-Lymphocytes , Sialic Acids/pharmacology , N-Acetylneuraminic Acid/pharmacology , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Immunotherapy/methods , Tumor Microenvironment
12.
EMBO Mol Med ; 15(12): e18028, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38009521

ABSTRACT

Tumor endothelial cells (TECs) actively repress inflammatory responses and maintain an immune-excluded tumor phenotype. However, the molecular mechanisms that sustain TEC-mediated immunosuppression remain largely elusive. Here, we show that autophagy ablation in TECs boosts antitumor immunity by supporting infiltration and effector function of T-cells, thereby restricting melanoma growth. In melanoma-bearing mice, loss of TEC autophagy leads to the transcriptional expression of an immunostimulatory/inflammatory TEC phenotype driven by heightened NF-kB and STING signaling. In line, single-cell transcriptomic datasets from melanoma patients disclose an enriched InflammatoryHigh /AutophagyLow TEC phenotype in correlation with clinical responses to immunotherapy, and responders exhibit an increased presence of inflamed vessels interfacing with infiltrating CD8+ T-cells. Mechanistically, STING-dependent immunity in TECs is not critical for the immunomodulatory effects of autophagy ablation, since NF-kB-driven inflammation remains functional in STING/ATG5 double knockout TECs. Hence, our study identifies autophagy as a principal tumor vascular anti-inflammatory mechanism dampening melanoma antitumor immunity.


Subject(s)
Melanoma , Humans , Mice , Animals , Melanoma/pathology , Endothelial Cells/metabolism , CD8-Positive T-Lymphocytes , NF-kappa B/metabolism , Autophagy , Immunotherapy , Tumor Microenvironment
13.
Sci Immunol ; 8(87): eadf7702, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37774008

ABSTRACT

Allergic disorders are caused by a combination of hereditary and environmental factors. The hygiene hypothesis postulates that early-life microbial exposures impede the development of subsequent allergic disease. Recently developed "wildling" mice are genetically identical to standard laboratory specific pathogen-free (SPF) mice but are housed under seminatural conditions and have rich microbial exposures from birth. Thus, by comparing conventional SPF mice with wildlings, we can uncouple the impact of lifelong microbial exposures from genetic factors on the allergic immune response. We found that wildlings developed larger populations of antigen-experienced T cells than conventional SPF mice, which included interleukin-10-producing CD4 T cells specific for commensal Lactobacilli strains and allergy-promoting T helper 2 (TH2) cells. In models of airway exposure to house dust mite (HDM), recombinant interleukin-33, or Alternaria alternata, wildlings developed strong allergic inflammation, characterized by eosinophil recruitment, goblet cell metaplasia, and antigen-specific immunoglobulin G1 (IgG1) and IgE responses. Wildlings developed robust de novo TH2 cell responses to incoming allergens, whereas preexisting TH2 cells could also be recruited into the allergic immune response in a cytokine-driven and TCR-independent fashion. Thus, wildling mice, which experience diverse and lifelong microbial exposures, were not protected from developing pathological allergic immune responses. Instead, wildlings mounted robust allergic responses to incoming allergens, shedding new light on the hygiene hypothesis.


Subject(s)
Hypersensitivity , Th2 Cells , Mice , Animals , Cytokines , Allergens , Immunity
14.
Sci Immunol ; 8(83): eadd3955, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37172103

ABSTRACT

Dendritic cells (DCs) mature in an immunogenic or tolerogenic manner depending on the context in which an antigen is perceived, preserving the balance between immunity and tolerance. Whereas the pathways driving immunogenic maturation in response to infectious insults are well-characterized, the signals that drive tolerogenic maturation during homeostasis are still poorly understood. We found that the engulfment of apoptotic cells triggered homeostatic maturation of type 1 conventional DCs (cDC1s) within the spleen. This maturation process could be mimicked by engulfment of empty, nonadjuvanted lipid nanoparticles (LNPs), was marked by intracellular accumulation of cholesterol, and was highly specific to cDC1s. Engulfment of either apoptotic cells or cholesterol-rich LNPs led to the activation of the liver X receptor (LXR) pathway, which promotes the efflux of cellular cholesterol, and repressed genes associated with immunogenic maturation. In contrast, simultaneous engagement of TLR3 to mimic viral infection via administration of poly(I:C)-adjuvanted LNPs repressed the LXR pathway, thus delaying cellular cholesterol efflux and inducing genes that promote T cell-mediated immunity. These data demonstrate that conserved cellular cholesterol efflux pathways are differentially regulated in tolerogenic versus immunogenic cDC1s and suggest that administration of nonadjuvanted cholesterol-rich LNPs may be an approach for inducing tolerogenic DC maturation.


Subject(s)
Dendritic Cells , Signal Transduction , Liver X Receptors/metabolism , Signal Transduction/genetics , Homeostasis , Cholesterol
15.
Sci Immunol ; 8(83): eabn6173, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37205768

ABSTRACT

Despite the clinical success of immune checkpoint blockade (ICB), in certain cancer types, most patients with cancer do not respond well. Furthermore, in patients for whom ICB is initially successful, this is often short-lived because of the development of resistance to ICB. The mechanisms underlying primary or secondary ICB resistance are incompletely understood. Here, we identified preferential activation and enhanced suppressive capacity of regulatory T cells (Treg cells) in αPD-L1 therapy-resistant solid tumor-bearing mice. Treg cell depletion reversed resistance to αPD-L1 with concomitant expansion of effector T cells. Moreover, we found that tumor-infiltrating Treg cells in human patients with skin cancer, and in patients with non-small cell lung cancer, up-regulated a suppressive transcriptional gene program after ICB treatment, which correlated with lack of treatment response. αPD-1/PD-L1-induced PD-1+ Treg cell activation was also seen in peripheral blood of patients with lung cancer and mesothelioma, especially in nonresponders. Together, these data reveal that treatment with αPD-1 and αPD-L1 unleashes the immunosuppressive role of Treg cells, resulting in therapy resistance, suggesting that Treg cell targeting is an important adjunct strategy to enhance therapeutic efficacy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Skin Neoplasms , Humans , Mice , Animals , T-Lymphocytes, Regulatory , B7-H1 Antigen , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy
16.
Front Immunol ; 14: 1118539, 2023.
Article in English | MEDLINE | ID: mdl-37081893

ABSTRACT

Introduction: Immunoglobulin A (IgA) is mostly considered as a non-inflammatory regulator at mucosal areas. However, previous work of our group showed that IgA can also be involved in disease pathology, because it provides a potent stimulus to activate neutrophils after crosslinking of surface CD89 (FcaRI), resulting in chronic inflammation and tissue damage. IgA (auto)antibodies and neutrophils are key players in various diseases, including blistering skin diseases and rheumatoid arthritis. Therefore, we generated an array of anti-CD89 monoclonal antibodies (mAbs) for therapeutic targeting of CD89. The biological activity of newly developed anti-human CD89 mAbs and their potential therapeutic capacity were investigated. Methods: Human neutrophils were isolated from heparinized healthy donor blood. The ability of anti-CD89 mAbs to bind human neutrophils was investigated by flow cytometry. Furthermore, the capacity of these anti-CD89 mAbs to inhibit IgA-mediated phagocytosis, neutrophil extracellular trap (NET) release and migration was studied. To this end, neutrophils were pre-incubated with/without anti-CD89 mAbs after which they were stimulated with IgA-coated beads. The amount of phagocytosed beads, NET release and migrated neutrophils were subsequently analysed. In parallel, chemoattractant leukotriene B4 and lactoferrin (as a measure for degranulation) release were determined. Finally, the therapeutic potential of our prototypic anti-CD89 mAb clone 10E7 was in vivo tested in anti-mouse collagen XVII human IgA-treated transgenic CD89 mice, a preclinical model for autoimmune linear IgA bullous disease (LABD). Results: Our results show that all generated anti-CD89 mAbs bound surface CD89 on neutrophils. Although these anti-CD89 mAbs bind to different epitopes on EC1 of CD89, they all have the capacity to inhibit IgA-mediated phagocytosis, neutrophil extracellular trap (NET) release and neutrophil migration. Moreover, IgA mediated leukotriene B4 and lactoferrin release are decreased in supernatant from anti-CD89 mAbs-treated neutrophils. Finally, anti-CD89 mAb clone 10E7, that was selected based on its selective binding profile on tissue micro arrays, reduced anti-mouse collagen XVII hIgA-induced neutrophil influx in an in vivo linear IgA bullous disease (LABD) mice model. Conclusion: This study clearly indicates that our newly developed anti-CD89 mAbs inhibited IgA-induced neutrophil activation and reduced anti-autoantigen IgA-induced neutrophil influx in vivo, supporting further clinical development for the treatment of LABD.


Subject(s)
Autoimmunity , Immunoglobulin A , Animals , Mice , Lactoferrin/metabolism , Leukotriene B4/metabolism , Inflammation
17.
Immunity ; 56(5): 1064-1081.e10, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36948193

ABSTRACT

The recent revolution in tissue-resident macrophage biology has resulted largely from murine studies performed in C57BL/6 mice. Here, using both C57BL/6 and BALB/c mice, we analyze immune cells in the pleural cavity. Unlike C57BL/6 mice, naive tissue-resident large-cavity macrophages (LCMs) of BALB/c mice failed to fully implement the tissue-residency program. Following infection with a pleural-dwelling nematode, these pre-existing differences were accentuated with LCM expansion occurring in C57BL/6, but not in BALB/c mice. While infection drove monocyte recruitment in both strains, only in C57BL/6 mice were monocytes able to efficiently integrate into the resident pool. Monocyte-to-macrophage conversion required both T cells and interleukin-4 receptor alpha (IL-4Rα) signaling. The transition to tissue residency altered macrophage function, and GATA6+ tissue-resident macrophages were required for host resistance to nematode infection. Therefore, during tissue nematode infection, T helper 2 (Th2) cells control the differentiation pathway of resident macrophages, which determines infection outcome.


Subject(s)
Filariasis , Filarioidea , Nematode Infections , Mice , Animals , Filarioidea/physiology , Th2 Cells , Monocytes , Pleural Cavity , Mice, Inbred C57BL , Macrophages/physiology , Cell Differentiation , Mice, Inbred BALB C
18.
Sci Rep ; 13(1): 2472, 2023 02 11.
Article in English | MEDLINE | ID: mdl-36774400

ABSTRACT

Colorectal cancer is a poorly immunogenic. Such property can be reverted by using ICD. However, ICD inducers can also induce the expression of inhibitory checkpoint receptors CD47 and PD-L1 on tumor cells, making CRC tumors resistant to mainly CD8 T cell killing and macrophage-mediated phagocytosis. In this study, we examined the therapeutic effect of Oxaliplatin and FOLFOX regimen in combination with blocking antibodies against CD47 and PD-L1. FOLFOX and Oxaliplatin treatment lead to an increase in CD47 and PD-L1 expression on CT-26 cells invitro and invivo. Combining blocking antibodies against CD47 and PD-L1 with FOLFOX leads to a significant increase in survival and a decrease in tumor size. This triple combining regimen also leads to a significant decrease in Treg and MDSC and a significant increase in CD8 + INF-γ + lymphocytes and M1/M2 macrophage ratio in the tumor microenvironment. Our study showed triple combining therapy with FOLFOX, CD47 and PD-L1 is an effective treatment regimen in CT-26 mice tumor model and may consider as a potential to translate to the clinic.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , B7-H1 Antigen , CD47 Antigen , Colorectal Neoplasms , Oxaliplatin , Tumor Microenvironment , Animals , Mice , Antibodies, Blocking , B7-H1 Antigen/metabolism , CD47 Antigen/metabolism , Oxaliplatin/pharmacology , Tomography, X-Ray Computed , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Colorectal Neoplasms/drug therapy
19.
Nat Immunol ; 24(1): 55-68, 2023 01.
Article in English | MEDLINE | ID: mdl-36581713

ABSTRACT

The inhibitory receptor PD-1 suppresses T cell activation by recruiting the phosphatase SHP-2. However, mice with a T-cell-specific deletion of SHP-2 do not have improved antitumor immunity. Here we showed that mice with conditional targeting of SHP-2 in myeloid cells, but not in T cells, had diminished tumor growth. RNA sequencing (RNA-seq) followed by gene set enrichment analysis indicated the presence of polymorphonuclear myeloid-derived suppressor cells and tumor-associated macrophages (TAMs) with enriched gene expression profiles of enhanced differentiation, activation and expression of immunostimulatory molecules. In mice with conditional targeting of PD-1 in myeloid cells, which also displayed diminished tumor growth, TAMs had gene expression profiles enriched for myeloid differentiation, activation and leukocyte-mediated immunity displaying >50% overlap with enriched profiles of SHP-2-deficient TAMs. In bone marrow, GM-CSF induced the phosphorylation of PD-1 and recruitment of PD-1-SHP-2 to the GM-CSF receptor. Deletion of SHP-2 or PD-1 enhanced GM-CSF-mediated phosphorylation of the transcription factors HOXA10 and IRF8, which regulate myeloid differentiation and monocytic-moDC lineage commitment, respectively. Thus, SHP-2 and PD-1-SHP-2 signaling restrained myelocyte differentiation resulting in a myeloid landscape that suppressed antitumor immunity.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Neoplasms , Animals , Mice , Cell Differentiation , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Myeloid Cells , Programmed Cell Death 1 Receptor/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 6 , Signal Transduction
20.
iScience ; 26(12): 108570, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38162021

ABSTRACT

The unfolded protein response (UPR) aims to restore ER homeostasis under conditions of high protein folding load, a function primarily serving secretory cells. Additional, non-canonical UPR functions have recently been unraveled in immune cells. We addressed the function of the inositol-requiring enzyme 1 (IRE1) signaling branch of the UPR in NK cells in homeostasis and microbial challenge. Cell-intrinsic compound deficiency of IRE1 and its downstream transcription factor XBP1 in NKp46+ NK cells, did not affect basal NK cell homeostasis, or overall outcome of viral MCMV infection. However, mixed bone marrow chimeras revealed a competitive advantage in the proliferation of IRE1-sufficient Ly49H+ NK cells after viral infection. CITE-Seq analysis confirmed strong induction of IRE1 early upon infection, concomitant with the activation of a canonical UPR signature. Therefore, we conclude that IRE1/XBP1 activation is required during vigorous NK cell proliferation early upon viral infection, as part of a canonical UPR response.

SELECTION OF CITATIONS
SEARCH DETAIL
...